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RESUMO 

Este projeto tem como proposta apresentar uma abordagem, diferente da 

convencional, que permite medir indiretamente as imperfeições geométricas 

axissimétricas presentes em cascas cilíndricas sujeitas a flambagem. O diferencial 

desta abordagem é que ao invés de ser necessário o mapeamento de toda 

superfície do corpo, basta inferir medições em um único ponto da estrutura. O 

parâmetro a ser medido experimentalmente é a resposta dinâmica de um único 

ponto da estrutura quando o corpo em análise é submetido a um carregamento 

súbito e instantâneo. Mostra-se, portanto, que é possível determinar as imperfeições 

geométricas de uma superfície por meio do conhecimento do perfil de velocidade de 

um ponto da superfície da estrutura durante um intervalo de tempo limitado. O cerne 

deste trabalho é a discussão e a apresentação dos argumentos matemáticos que 

asseguram que esta abordagem matemática fornece resultados confiáveis, que 

condizem com a realidade. Posto isto, é importante salientar que esta abordagem 

indireta (obtenção das imperfeições geométricas por meio do conhecimento da 

resposta dinâmica de um ponto da estrutura quando a mesma é submetida a um 

impulso), recai na formulação de um problema inverso e mal-posto. Portanto, há a 

necessidade do emprego de um método de regularização para que os resultados 

fornecidos de acordo com esta formulação sejam úteis do ponto de vista da 

engenharia. Para a análise deste problema são empregados três métodos de 

regularização. São eles: regularização de Tikhonov, método iterativo de Landweber 

e método probabilístico bayesiano. Para finalizar, posteriormente é feito um estudo 

comparativo entre os três métodos implementados.   

Palavras-chave: Regularização, Problemas Inversos, Flambagem, Problema Mal-

Posto. 
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ABSTRACT 

The aim of this paper is finding out a mathematical approach, different from the 

conventional ones, to measure indirectly the axisymmetric geometric imperfection 𝜔0 

in a given cylindrical shell subject to buckling. The trick of this approach is to get the 

measure just in one point of the structure instead of to get the measures in the role 

surface. The parameter to be measure is the dynamic response of one point of the 

structure when the body is subject to a suddenly and instantaneous load.  It is 

showed that by this way it is possible to recover 𝜔0from the knowledge of the 

velocity of a point during a bounded period of time. The main point of this paper is 

the discussion and the presentation of mathematical arguments which ensure that 

this approach is reliable. It is important to emphasize that this indirectly approach 

lays on the formulation of an inverse problem and ill-posed problem. Then, it is 

necessary to apply regularization method to obtain useful solutions from the 

engineering point of view. It is applied three regularization methods. They are: 

Tikhonov regularization, iterative method of Landweber and Statistical Bayesian 

approach. To sum up, it is done a comparative study between the all methods 

applied.  

Keywords: Regularization, Inverse Problems, Buckling, Ill-posed Problem. 
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1. INTRODUÇÃO 

 

Nós últimos 30 anos [1] o número de publicações relacionadas a problemas 

inversos cresceu de forma rápida. Este fato se deve à crescente demanda de 

tecnologia e conhecimento das ciências naturais, as quais nos levam à formulação 

de problemas que devem ser interpretados e solucionados por meio da busca da 

causa de conseqüências conhecidas. É exatamente este caminho, contrário à 

ordem natural que caracteriza a formulação de um problema inverso.  

A necessidade de medir imperfeições geométricas em estruturas axissimétricas, 

como cilíndricas, é um fato corriqueiro na engenharia, como na aeronáutica, na 

indústria de estruturas off-shore, bem como em aplicações que envolvem grandes 

estruturas como é o caso de torres de resfriamento, como citado em [3]. 

Dada esta necessidade e a complexidade dos atuais métodos de medição, a 

apresentação de uma abordagem indireta, que permite a obtenção dessas 

imperfeições superficiais através do conhecimento do perfil de velocidade de um 

único ponto da superfície da estrutura quando ela é submetida a um carregamento 

repentino e súbito é bastante interessante do ponto de vista prático e econômico.  

Apresentação desta abordagem indireta recai na formulação de um problema 

inverso mal-posto. Portanto, é necessária a aplicação de um método de 

regularização para lidar com a questão de mal-acondicionamento do problema. 
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2. OBJETIVOS 

 

Este trabalho tem como objetivo apresentar uma abordagem indireta que permite a 

obtenção das imperfeições geométricas de uma casca cilíndrica por meio do 

conhecimento da resposta dinâmica de um único ponto da estrutura quando ela é 

submetida a uma carga de impulso. Sendo assim, diferentemente dos métodos 

convencionais, não há a necessidade de se medir diretamente a imperfeição 

geométrica presente ao longo de toda a superfície da estrutura. 

Para atingir o objetivo enunciado acima o trabalho está estruturado da seguinte 

maneira: 

 Apresentação dos argumentos matemáticos citados nas referências 

bibliográficas os quais asseguram a confiabilidade do método, bem como as 

hipóteses adotadas. 

 Apresentação do problema físico, ou seja, como é modelado 

matematicamente a dinâmica da estrutura quando submetida a um 

carregamento repentino e instantâneo. 

 Apresentação de três métodos de regularização que permitem lidar com a 

questão de mal acondicionamento do problema. 

 Implementação numérica dos três métodos de regularização, seguido da 

análise comparativa de desempenho entre os três. 
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3. MÉTODOS CONVENCIONAIS DE MEDIÇÃO DE 

IMPERFEIÇÕES GEOMÉTRICAS EM CASCAS 

 

Levando-se em conta grandes estruturas de concreto como torres de resfriamento 

que possuem dimensões da ordem de 60 𝑚 a 160 𝑚 de altura e espessura entre 

0.1 𝑚 a 0.25 𝑚, os desvios superficiais de geometria podem atingir de duas ou três 

vezes a dimensão da espessura, como é mencionado em [3]. 

Um modo de mapear a superfície de uma casca de revolução é por meio da 

triangulação utilizando teodolitos. Para a aplicação desta técnica é necessário a 

utilização de várias estações de medição, sendo que duas delas são utilizadas 

simultaneamente para obter a informação de um ponto da estrutura como é 

mostrado na figura 1. 

 

Figure 1: Processo de medição de torres de resfriamento utilizando teodolitos. 

A dimensão da casca cilíndrica é obtida através da linha poligonal ABCDEFGH que 

interliga as estações de medição. Para exemplificar, toma-se o ponto T da superfície 

da estrutura cilíndrica. O ponto T é identificado na superfície através de um laser 

que se encontra localizado em L. Sendo assim, a posição angular de T é obtida 

através das estações A e B determinando, portanto, o comprimento do segmento 

AB. 

Para torres de resfriamento o número de pontos que necessitam ser medidos é da 

ordem de 103 para que se obtenha o mapeamento completo da superfície [3] 
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Outra técnica empregada com esta finalidade é o uso do dispositivo laser “range-

finder”. Apenas uma observação é necessária para se obter a distância LT, 

diferentemente do método anterior. 

 

Figure 2: Laser “range finder”utilizado em medição de imperfeições em estruturas de grande escala. 

Fonte[6]. 

Uma terceira maneira de se obter o perfil desejado é por meio da fotogrametria. 

Tratando-se de estruturas cilíndricas de dimensão reduzidas, as quais são 

geralmente utilizadas em laboratórios como corpo de prova para avaliação das 

características de estruturas de grande dimensão, a importância em se determinar 

as imperfeições geométricas superficiais está associada à avaliação da carga de 

flambagem. Atualmente as técnicas utilizadas para se fazer essa aferição consistem 

no mapeamento da superfície interna da estrutura por meio de um relógio 

apalpador.    

Com base neste breve apanhado de técnicas empregadas para a medição da 

imperfeição geométrica de superfícies cilíndricas, observa-se que se trata de 

procedimentos complexos. Portanto, uma abordagem indireta que não necessita do 

mapeamento direto do perfil superficial de toda a extensão do cilindro vem a 

simplificar esta tarefa bastante árdua. Isto porque a abordagem proposta por este 

trabalho necessita de medições em apenas um ponto da superfície, diferentemente 
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dos métodos citados anteriormente que exigem medições ao longo de grandes 

extensões.  
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4. PROBLEMAS INVERSOS 

 

Para tornar claro o conceito associado a problemas inversos, nesta seção está 

reproduzido o exemplo dado por [1].  

Partindo de um modelo matemático que descreve um processo físico e assumindo 

que este modelo fornece uma descrição do comportamento do sistema, das 

condições de operação e das grandezas envolvidas: entrada, parâmetros do 

sistema e saída, três tipos de formulação podem ser encontradas.  

São elas:  

 O problema direto: conhecida a entrada e os parâmetros do sistema deve-se 

encontrar sua saída. 

 O problema de reconstrução: conhecido os parâmetros do sistema e a saída, 

determinar a entrada do sistema. 

 O problema de identificação: conhecida a entrada e a saída, descobrir os 

parâmetros do sistema. 

 

Figure 3: Esquema de um sistema e seus parâmetros. 

O primeiro caso é denominado problema direto, uma vez que ele é orientado de 

acordo com a relação causa-efeito. Já os dois últimos casos são denominados 

problema inverso, uma vez que ambos tratam de encontrar causas desconhecidas 

para conseqüências conhecidas.  

Em alguns casos, o problema inverso pode ser convertido facilmente em um 

problema direto. Por exemplo, supondo que 𝐴 seja o operador que descreve o 
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sistema em questão e que, além disso, 𝐴−1 seja inversível e conhecida, temos que o 

problema de reconstrução pode ser resolvido por: 𝑥 = 𝐴−1𝑦, dado que 𝑥 é a entrada 

e 𝑦 é a saída. Entretanto, se a saída 𝑦 não estiver no domínio de 𝐴−1 o 

conhecimento da inversa de 𝐴 não soluciona o problema. Este tipo de situação é 

comumente encontrado em problemas nos quais a saída é determinada de forma 

imprecisa ou encontra-se distorcida devido a distúrbios inerentes a processos de 

medição, por exemplo. Em outros casos, 𝐴−1 é um operador mal comportado, ou 

seja, aproxima-se da condição de operador singular. Isso causa grande instabilidade 

na resposta obtida tornando-a praticamente inútil do ponto de vista de engenharia.  

Neste contexto que são empregados os métodos de regularização. Estes métodos 

têm por objetivo afastar o operador 𝐴−1da região de operação singular, tornando 

confiável (dentro de uma determinada margem) a solução obtida para o problema. 

Neste trabalho são empregados três métodos de regularização. Após a 

implementação de cada um deles é realizado um estudo comparativo.  

Para a análise completa de um problema inverso, além do que foi dito, é 

fundamental levar em conta a unicidade da reconstrução do dado que se deseja 

encontrar, ou seja, se a solução obtida pelo método é de fato única. Outro aspecto 

importante diz respeito à estabilidade do modelo matemático que descreve o 

sistema em análise. 

Neste trabalho a unicidade da reconstrução da imperfeição inicial da superfície está 

provada em [8]. Já a estabilidade do sistema está associada ao grau em que os 

erros inerentes aos dados que se tem conhecimento interferem na confiabilidade da 

solução obtida para o problema em análise. Em outras palavras, significa saber se 

um pequeno distúrbio no dado obtido ou observado conduz a um pequeno ou 

grande distanciamento da solução real e exata. Neste trabalho, a avaliação quanto à 

estabilidade será feita por meio de análises numéricas. 
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5. FORMULAÇÃO DO PROBLEMA 

 

O problema formulado trata da análise de uma estrutura cilíndrica com imperfeições 

superficiais, que devem ser determinadas por meio da análise da resposta dinâmica 

de um único ponto da estrutura quando submetida a um impacto.  

O problema trata especificamente de uma casca cilíndrica de espessura 𝑕, raio 𝑅, 

comprimento 𝐿, submetida a uma carga normal de impacto de valor 𝑁. Além disso, o 

material da estrutura é homogêneo de densidade 𝜌, módulo de Young 𝐸 e 

coeficiente de Poisson 𝜈. A imperfeição superficial inicial é representada por 

𝜔0:  0, 𝐿 → ℝ,𝜔0 ∈ 𝐿2  0, 𝐿  . O problema descrito acima está representado pela 

figura abaixo. 

  

Figure 4: Representação do problema físico. Fonte[8] 

A equação que descreve a dinâmica desta estrutura submetida ao carregamento 𝑁 

repentino e instantâneo é obtida através da análise mecânica de um elemento 

diferencial da estrutura [2]. 

𝐷
𝜕4𝑤

𝜕𝑥4 + 𝑁
𝜕2𝑤

𝜕𝑥2 + 𝜌𝑕
𝜕2𝑤

𝜕𝑡2 +
𝐸𝑕

𝑅2 𝑤 = −𝑁
𝜕2𝑤0

𝜕𝑥2 , ∀𝑥 ∈  0, 𝐿 , ∀𝑡 ∈]0, +∞)            (1)

  

Sendo que 𝑤 é a amplitude da resposta dinâmica do ponto da estrutura e 𝐷 =

𝐸𝑕3

12(1−𝜈2)
  é a rigidez à flexão da casca cilíndrica. É importante observar que 𝑁 é uma 

carga de impacto. Portanto, após sua aplicação repentina a estrutura encontra-se 
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em repouso.  As condições de contorno da estrutura são dadas pelas seguintes 

equações: 

𝑤 𝑥, 𝑡 =
𝜕2𝑤

𝜕𝑥2
= 0, 𝑥 = 0 𝑒 𝑥 = 𝐿            (2) 

𝑤 𝑥, 𝑡 =
𝜕𝑤

𝜕𝑡
= 0, 𝑡 = 0              (3) 

  A carga 𝑁 é definida e dada pela inequação: 

𝑁2 <
4𝐷𝐸𝑕

𝑅2                           (4) 

Para adimensionalizar o problema adotou-se as seguintes variáveis: 

𝑢 =
𝜔

𝑕
;  𝑢0 =

𝜔0

𝑕
                    (5) 

𝜉 =
𝑥

𝐿
;  𝜏 = 𝜔1𝑡;  𝛼 =

𝑁

𝑁𝑐𝑟𝑖𝑡
             (6) 

Onde 𝜔1 é a primeira freqüência natural do sistema, a qual é independente das 

imperfeições iniciais da estrutura e 𝑁𝑐𝑟𝑖𝑡  é a carga crítica de flambagem da estrutura 

perfeitamente cilíndrica (sem imperfeições). Os parâmetros descritos acima são 

dados pelas equações: 

𝜔1 =  
𝐷𝜋4

𝜌𝑕𝐿4 +
𝐸

𝜌𝑅2 ;  𝑁𝑐𝑟𝑖𝑡 =
𝐷

𝐿2 𝛾             (7) 

𝛾 =
4𝐿2

𝑅𝑕
 3(1 − 𝜈2);  𝛽 =

𝐸𝑕𝐿4

𝐷𝑅2              (8) 

A equação (1) na versão adimensional é representada por: 

𝐷
𝜕4𝑢

𝜕𝜉4 + 𝑁
𝜕2𝑢

𝜕𝑥𝜉 2 + (𝛽 + 𝜋4)
𝜕2𝑢

𝜕𝜏2 + 𝛽𝑢 = −𝛼𝛾
𝜕2𝑢0

𝜕𝜉2 , ∀𝜉 ∈  0,1 , ∀𝜏 ∈]0, +∞)                  (9) 

As condições de contorno e inicias adimensionalizadas são dadas por: 

𝑢(𝜉, 𝜏) =
𝜕2𝑢

𝜕𝜉2 = 0, 𝜉 = 0 𝑒 𝜉 = 1                    (10) 

𝑢 𝜉, 𝜏 = 𝜏 = 0, 𝜏 = 0            (11) 
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Para avaliar de forma bastante genérica as imperfeições iniciais da estrutura 

adotou-se a seguinte formulação [4] para 𝜔0(𝑥) que no formato adimensional é 

expresso por 𝑢0 (𝜉):  

𝑢0(𝜉) =  𝐴𝑛
∞
𝑛=1 sin 𝑛𝜋𝜉          (12) 

A partir do isomorfismo entre 𝐿2 ( 0,1 ) e 𝑙2 temos que (𝐴𝑛)𝑛∈ℕ ∈ 𝑙2. Por separação 

de variáveis obtém-se que 𝑢(𝜉, 𝜏) =  𝐺𝑛(𝜏)∞
𝑛=1 sin 𝑛𝜋𝜉 . Expressando de forma 

mais completa: 

𝑢(𝜉, 𝜏) =  𝐴𝑛
∞
𝑛=1 [

𝛼𝛾𝑛2(1−cos  𝑛𝜋𝜉  )

𝑟𝑛 2(𝛽+𝜋4)
] sin 𝑛𝜋𝜉       (13) 

Onde 𝑟𝑛 =
𝑛𝜋

 𝛽+𝜋4
 𝑛2𝜋2 − 𝛼𝛾 +

𝛽

𝑛2𝜋2.       (14) 

Derivando a equação (13) temos que o perfil de velocidade na estrutura é definido 

por: 

𝜕𝑢 (𝜉 ,𝜏)

𝜕𝜏
= 𝑣(𝜉, 𝜏) =  𝐴𝑛

∞
𝑛=1

𝛼𝛾𝑛2sin (𝑛𝜋𝜉 )

𝑟𝑛 2(𝛽+𝜋4)
 sin(rnτ)      (15) 

É provado em [8] a unicidade da recuperação do perfil de imperfeições iniciais. Além 

disso, é provado que basta a análise do perfil de velocidade em um único ponto 𝜉0 

durante um intervalo de tempo limitado para que seja possível determinar 𝐴𝑛  e 

assim obter as imperfeições geométricas iniciais da estrutura. 

Sendo assim, substituindo 𝜉por 𝜉0 temos: 

𝑣 𝜉0,𝜏 =  𝐴𝑛
∞
𝑛=1

𝛼𝛾𝑛2sin (𝑛𝜋𝜉0)

𝑟𝑛 2(𝛽+𝜋4)
 sin(rnτ)                                                                   (16) 

Portanto, após a determinação das grandezas envolvidas no problema através das 

equações explicitadas acima, temos em termos matriciais o seguinte sistema: 

𝑣 𝜏1 

𝑣 𝜏2 

𝑣 𝜏𝑚 
=

𝜙 1, 𝜏1 𝜙 2, 𝜏1 𝜙 𝑝, 𝜏1 

𝜙 1, 𝜏2 𝜙 2, 𝜏2 𝜙 𝑝, 𝜏2 

𝜙 1, 𝜏𝑚 𝜙 2, 𝜏𝑚 𝜙 𝑝, 𝜏𝑚  
×

𝐴1

𝐴2

𝐴𝑝

                                                            (17)   

Sendo que 𝜙(𝑛, 𝜉0,) é determinado pela equação abaixo de acordo com (16): 

𝜙(𝑛, 𝜉0,) =
𝛼𝛾𝑛2sin (𝑛𝜋𝜉0)

𝑟𝑛 2(𝛽+𝜋4)
 sin(rnτ)        (18) 
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Portanto, conhecendo  𝑣 𝜉0,𝜏  por meio do processo experimental e determinado 

𝜙(𝑛, 𝜉0,) analiticamente, é possível encontrar os coeficientes [𝐴𝑛 ] e assim 

determinar 𝜔0(𝑥) =  𝐴𝑛
∞
𝑛=1 sin 𝑛𝜋𝑥 .        (19) 

A formulação inversa da equação apresentada em (17) e dada por: 

 𝐴 =  𝜙 −1[𝑣]          (20) 
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6. REGULARIZAÇÃO DE TIKHONOV 

 

Como mencionado anteriormente, quando tratamos de problemas mal-postos, 

complicações  podem ocorrer quando deseja-se encontrar a solução da equação do 

tipo  𝐴  𝑥 = [𝑦] .  

Posto isto, façamos as seguintes considerações: 

𝐻1, 𝐻2 são espaços de Hilbert de dimensão infinita com os produtos internos 

definidos por < 𝑥, 𝑦 >𝑗 , 𝑥, 𝑦 ∈  𝐻𝑗 , 𝑗 = 1,2 e 𝐴: 𝐻1 → 𝐻2 um operador compacto. 

Os espaços de Hilbert são uma generalização abstrata dos espaços Euclidianos ℝ𝑛  

e unitário ℂ𝑛  onde a notação central é o produto interno. A partir do produto interno 

obtemos a norma e o conceito de ortogonalidade entre vetores no espaço. 

Um operador linear  𝑇 é dito compacto se 𝑇: 𝐸 → 𝐹 para toda seqüência limitada 

(𝑥𝑛)  ⊂ 𝐸, a seqüência (𝑇𝑥𝑛 ) possuir uma subseqüência convergente. Como 

exemplo de espaço normado temos o espaço de Hilbert.  

Sendo assim, de acordo com [5] temos a seguinte definição: 

Definição: Seja 𝛿 > 0 uma constante dada. A solução regularizada de Tikhonov 

𝑥𝛿 ∈  𝐻1 (pertencente ao espaço de Hilbert) é minimizada pelo funcional, dado que 

existe um mínimo: 

𝐹𝛿 𝑥 =    𝐴  𝑥 − [𝑦] 2 + 𝛿 [𝑥] 2                                                                          (21) 

O parâmetro 𝛿 apresentado é denominado parâmetro de regularização.  Ao 

introduzir este parâmetro substituímos a matriz [𝐴] por outra “semelhante”, porém 

isenta do problema de mal- acondionamento. 

A escolha do parâmetro de regularização 𝛿 é baseada no nível de ruído da medida 

[𝑦].  Assumindo que 𝜀 > 0 seja uma estimativa da norma do erro do vetor  [𝑦] −

[𝑦0] < 𝜀, 𝑓 𝛿 =   𝐴  𝑥𝛿  − [𝑦] = 𝜀,  isto é, a solução regularizada não deve ser 

mais precisa do que o nível do ruído. 
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Aplicando o método descrito acima para o problema de determinação de 

imperfeições geométricas em superfícies cilíndricas temos que a velocidade de um 

determinado ponto da estrutura em certo instante do tempo é dada pela equação: 

𝑣 𝜁0 , 𝜏 =  𝐴𝑛
∞
𝑛=1 𝜙(𝑛, 𝜏, 𝜁0)         (22) 

Tendo sido aquisitados (de acordo com algum método de medição) os valores da 

velocidade em 𝜁0 durante um intervalo de tempo limitado, o sistema matricial que 

descreve o problema em questão é representado por: 

𝑣 𝜏1 

𝑣 𝜏2 

𝑣 𝜏𝑚 
=

𝜙 1, 𝜏1 𝜙 2, 𝜏1 𝜙 𝑝, 𝜏1 

𝜙 1, 𝜏2 𝜙 2, 𝜏2 𝜙 𝑝, 𝜏2 

𝜙 1, 𝜏𝑚 𝜙 2, 𝜏𝑚 𝜙 𝑝, 𝜏𝑚  
×

𝐴1

𝐴2

𝐴𝑝

      (23) 

De forma mais compacta: 

 𝑣 =  𝜙 × [𝐴]          (24) 

Lembrando que os valores de 𝜙(𝑛, 𝜏) são conhecidos, de acordo com (18), deseja-

se determinar os coeficientes [𝐴𝑛 ]. Temos que: 𝐴 = [𝜙]−1 × [𝑣] 

Como dito anteriormente, temos que o problema inverso acima é mal-posto. Sendo 

assim, é necessária a aplicação de um método de regularização. O objetivo é a 

minimização da norma 𝐹 𝐴𝑛 =   𝜙  𝐴𝛿  − [𝑣] 2 onde [𝐴𝛿 ] é a solução regularizada. 

𝐹 𝐴𝑛 =  ( 𝐴𝑛
𝑚
𝑗=1

𝑝
𝑛=1 𝜙 𝑛, 𝜏𝑗  − 𝑣(𝜏𝑗 ))2       (25) 

Uma condição para o mínimo de 𝐹 𝐴𝑛  é obtido para: 

𝜕𝐹  𝐴𝑛  

𝜕𝐴𝑘
= 0           (26) 

Calculando a derivada parcial de (25) em função dos coeficientes [𝐴𝑛 ] temos: 

  𝐴𝑛
𝑚
𝑗=1

𝑝
𝑛=1 𝜙2 𝑛, 𝜏𝑗  =   𝑣(𝜏𝑗 )𝑚

𝑗=1 𝜙 𝑛, 𝜏𝑗  
𝑝
𝑛=1                                                      (27) 

Em termos matriciais a equação (25) resulta no sistema normal dado por: 

 𝜙 𝑡 𝜙 [𝐴] =   𝜙 𝑡[𝑣]         (28) 

Se  𝜙 𝑡 𝜙 =  𝐵  e  𝜙 𝑡 𝑣 = [𝐶] temos que:  

 𝐴 =  𝐵 −1[𝐶]          (29) 
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Ao implementar numericamente o problema descrito por (29) nota-se que se trata de 

um problema mal posto, que opera próximo a região singular. Sendo assim, aplica-

se o método de regularização de Tikhonov de acordo com a equação (21). 

Temos então a minimização da norma dada por: 

𝐹 𝐴𝑛 =   𝜙  𝐴𝛿  − [𝑣] 2 + 𝛿 [𝐴𝛿 ]   2        (30) 

Que analogamente ao que foi desenvolvido acima resulta em: 

( 𝜙𝑡  𝜙 + [𝐼]𝛿) × [𝐴] =   𝜙 𝑡[𝑣]        (31) 

Se  𝜙 𝑡 𝜙 + [𝐼]𝛿 =  𝐵  e  𝜙 𝑡 𝑣 = [𝐶] temos: 

 𝐴 =  𝐵 −1[𝐶]          (32) 
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7. MÉTODO ITERATIVO DE LANDWEBER 

 

O método iterativo de Landweber é aplicado para equações lineares e não lineares. 

É provado em [1] que para todos os casos a convergência de resultados é obtida 

mesmo quando há a presença de ruído no dado imputado.  Neste trabalho, é 

avaliado o sistema  𝐴  𝑥 = [𝑦]. 

Sabe-se que nas circunstâncias reais os dados possuem erro de medição, portanto, 

somente dados aproximados 𝑦𝜀  tal que  [𝑦] − [𝑦𝜀] ≤ 𝜀 estão disponíveis (dado que 

𝜀 é o grau de ruído). 

Tomando [𝐴] temos que a solução generalizada é dada por  𝐴∗  𝐴  𝑥 = [𝐴∗][𝑦] 

onde [𝐴∗] é a adjunta de [𝐴].  

O método iterativo que fornece a solução do sistema normal dado é baseado em 

equações de ponto fixo do tipo: 

 𝑥 =  𝑥 −  𝐴∗   𝐴  𝑥 −  𝑦  =   𝐼 −  𝐴∗  𝐴   𝑥 + [𝐴∗][𝑦]     (33) 

A iteração de ponto fixo acima sugere a iteração explícita dada por: 

[𝑥𝑘+1] = [𝑥𝑘] − 𝜆[𝐴∗]  𝐴  𝑥𝑘 − [𝑦] , 𝑘 ≥ 0      (34) 

Um ponto fixo de uma função 𝜑(𝑥) é um número real 𝜁 tal que 𝜁 = 𝜑(𝜁). Seja 𝜁 uma 

raiz da equação 𝑓 𝑥 = 0, isolada no intervalo 𝐼 = [𝑎, 𝑏]. Seja 𝜑 uma função de 

iteração para a equação 𝑓 𝑥 = 0. A partir de 𝑓 𝑥 = 0, obtém-se 𝑥 = 𝜑 𝑥  se: 

 𝜑 𝑥  e 𝜑′ 𝑥  (derivada de 𝜑 𝑥 ) são contínuas em 𝐼 

 𝜑 𝑥  ∈ 𝐼 para qualquer 𝑥 ∈ 

   𝜑` 𝑥  ≤ 𝑀 < 1, para qualquer 𝑥 ∈ 𝐼 

  𝑥0 ∈ 𝐼 

Então a sucessão {𝑥𝑘} gerada pelo processo iterativo 𝑥𝑘+1 = 𝜑 𝑥𝑘  converge para 𝜁. 

O parâmetro 𝜆 introduzido acima é um fator de relaxação. 𝜆 < 1 se  [𝐴] > 1. Caso 

contrário, 𝜆 = 1. 
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Quanto ao critério de parada é adotado o princípio da discrepância, o qual afirma 

que o processo iterativo deve parar no passo 𝑘 = 𝑘(𝜀, 𝑦𝜀) onde: 

 [𝑦𝜀 −  𝐴 [𝑥𝑘
𝜀 ] ≤ 𝜏𝜀, sendo 𝜏 > 1.       (35) 

Aplicando este método ao problema de determinação das imperfeições geométricas 

em superfícies cilíndricas temos: 

(𝐴𝑛)
𝜙
→ 𝑓 𝜏 =  𝐴𝑛

𝑝
𝑛=1  𝜙 𝑛, 𝜏         (36) 

Ou seja, aplicando o operador 𝜙 em (𝐴𝑛 ) obtém-se a seqüência dada por (16). 

Agora, aplicando o operador adjunto de 𝜙 (𝜙∗) em 𝑓 𝜏 , que é a seqüência expressa 

em (25) obtém-se uma nova seqüência dada abaixo por (37):  

𝑓 𝜏 
𝜙∗

  𝑔 𝜏 = (𝑐𝑖) =   𝑓 𝜏 𝜙(𝑖, 𝜏)𝛿𝜏
𝑏

𝑎

𝑝
𝑖=1       (37) 

Onde 𝑎 e 𝑏 são os limites do intervalo de integração. 

Sendo assim, a equação acima (37) pode ser reescrita como: 

(𝑐𝑖) =    𝐴𝑛
𝑝
𝑛=1  𝜙 𝑛, 𝜏 𝜙(𝑖, 𝜏)𝛿𝜏

𝑏

𝑎

𝑝
𝑖=1        (38) 

Isolando os termos constantes: 

𝑓(𝜏)
𝜙∗

  𝑔 𝜏 =   𝐴𝑛
𝑝
𝑛=1   𝜙 𝑛, 𝜏 𝜙(𝑖, 𝜏)𝑑𝜏

𝑏

𝑎

𝑝
𝑖=1       (39) 

Portanto, a equação (34) reescrita em função dos parâmetros deste problema é 

dada por: 

[𝐴𝑘+1] = [𝐴𝑘 ] − 𝜆[𝜙∗]  𝜙  𝐴𝑘 − [𝑣]        (40) 

Sendo assim, o termo dado por [𝜙∗] 𝜙  𝐴𝑘  = 𝑔 𝜏  é representado pelo sistema: 

𝑔 𝜏 =

 𝜙 1, 𝜏 𝜙 1, 𝜏 𝑑𝜏
𝑏

𝑎
 𝜙 1, 𝜏 𝜙 2, 𝜏 𝑑𝜏
𝑏

𝑎
 𝜙 1, 𝜏 𝜙 𝑝, 𝜏 𝑑𝜏
𝑏

𝑎

 𝜙 2, 𝜏 𝜙 1, 𝜏 𝑑𝜏
𝑏

𝑎
 𝜙 2, 𝜏 𝜙 2, 𝜏 𝑑𝜏
𝑏

𝑎
 𝜙 2, 𝜏 𝜙 𝑝, 𝜏 𝑑𝜏
𝑏

𝑎

 𝜙 𝑝, 𝜏 𝜙 1, 𝜏 𝑑𝜏
𝑏

𝑎
 𝜙 𝑝, 𝜏 𝜙 2, 𝜏 𝑑𝜏
𝑏

𝑎
 𝜙 𝑝, 𝜏 𝜙 𝑝, 𝜏 𝑑𝜏
𝑏

𝑎

×

𝐴1

𝐴2

𝐴𝑝

   (41) 

E analogamente ao resultado obtido em (37), aplicando 𝑣(𝜏)
𝜙∗

  𝑠 𝜏  temos: 
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𝑣 𝜏 
𝜙∗

  𝑠 𝜏 = (𝑐𝑖) =   𝑣 𝜏 𝜙(𝑖, 𝜏)𝛿𝜏
𝑏

𝑎

𝑝
𝑖=1       (42) 

De forma mais clara resulta em: 

𝑠 𝜏 =  𝜙∗ [𝑣] =

 𝑣(𝜏)𝜙 1, 𝜏 𝑑𝜏
𝑏

𝑎

 𝑣(𝜏)𝜙 2, 𝜏 𝑑𝜏
𝑏

𝑎

 𝑣(𝜏)𝜙 𝑝, 𝜏 𝑑𝜏
𝑏

𝑎

       (43) 

Portanto, a equação (40) é reescrita de acordo com: 

[𝐴𝑘+1] = [𝐴𝑘 ] − 𝜆([𝑔 𝜏 ] − [𝑠 𝜏 ])                                                                           (44)   

Quanto ao critério de parada dado em (35) temos: 

 [𝑣] − [𝑓 𝜏 ][𝐴𝑘] ≤ 𝜏𝜀         (45) 

Portanto, o processo iterativo é encerrado para o 𝑘 cuja norma dada acima respeita 

a inequação dada em (45). 
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8. MÉTODO ESTATÍSTICO DE BAYES 

 

A idéia da regularização por métodos estatísticos é reformular o problema inverso 

de tal forma que ele passe a ser encarado como um problema de busca de 

informações estatísticas a respeito das variáveis e parâmetros que envolvem o 

modelo em estudo. 

Essa abordagem estatística para problemas inversos está baseada em quatro 

princípios segundo [5]. Eles são: 

 Todas as variáveis do modelo são modeladas como variáveis aleatórias. 

 A aleatoriedade associada às variáveis descreve o grau de informação que 

temos sobre elas. 

 O grau de informação relativo a tais variáveis é expresso na forma de 

distribuições probabilísticas. 

 A solução do problema inverso, dentro desta abordagem, é expressa em 

distribuição de probabilidade.  

Diferentemente da abordagem clássica de métodos de regularização, que fornecem 

uma estimação a respeito da variável desconhecida, a regularização por métodos 

estatísticos produz uma distribuição que pode ser utilizada para se obter uma 

estimação do valor que se deseja determinar.  

Supondo que o fenômeno analisado seja dependente das variáveis 𝑋1,  𝑋2 …𝑋𝑛  e 

que o fato a ser observado combine diferentes níveis de cada uma das variáveis 

aleatórias. Por exemplo, para a variável 𝑋1 tem se os níveis 𝑥1 = 𝑥11 , 𝑥12 , … , 𝑥1𝑝 , 

supondo que haja p diferentes combinações de cada uma das variáveis. De acordo 

com [7] assume-se que o fenômeno pode ser modelado da seguinte forma: 

[𝑦 𝑥1, 𝑥2, … 𝑥𝑛 ] = 𝛽0 +   𝛽𝑖 
𝑞
𝑖=1 𝑋[𝑔𝑖 𝑥1, 𝑥2 , … 𝑥𝑛 ]     (46) 

 Ou seja, de forma mais compacta  𝑦 =  𝑔 [𝛽]. 

Os dados experimentais [𝑦 ∗] são gerados de um processo aleatório da forma 

[𝑦∗ 𝑥1, 𝑥2 , … 𝑥𝑛 ] = 𝛽0 +  [𝛽𝑖]
𝑞
𝑖=1 𝑋[𝑔𝑖 𝑥1, 𝑥2, … 𝑥𝑛 ] + [𝜀]    (47) 
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Onde 𝜀 representa o erro associada à medida. Tratando da formulação 

probabilística do problema temos que  𝜀 é uma distribuição normal padrão (variância 

𝑕−1 = 1 e média nula). 

A idéia por traz desta formulação probabilística é a seguinte: deseja-se maximizar a 

probabilidade de que o valor de 𝑦 obtido experimentalmente (𝑦∗) de fato condiz com 

o valor real, ou seja, aquele que é isento de erro. Para isto, temos o seguinte 

sistema: 

 𝑦∗ =  𝑔 [𝛽∗] . Portanto, conhecendo [𝑔] e [𝑦∗], basta determinar o valor do vetor 

[𝛽∗] que maximiza a probabilidade de que o valor  𝑦∗ → [𝑦] (exato). 

Para determinar o valor de [𝛽∗] define-se a função densidade probabilidade de [𝑦]. 

𝑓 𝑦∗ =
1

 2
𝑒−

𝑕

2
 ([𝑦∗]− 𝛽0+ [𝛽𝑖  ]×[𝑔𝑖(𝑥1

𝑞
𝑖=1 ,𝑥2 ,…,𝑥𝑛  ]))2  

      (48) 

Expressando de forma mais genérica e em função da probabilidade condicional 

𝑓(𝑦∗|𝛽) temos: 

𝑓 𝑦∗|𝛽 =
1

 2
𝑝 𝑒

−
𝑕

2
   𝑦 ∗ − 𝑔  𝛽  𝑇([𝑦∗]−[𝑔][𝛽]) 

       (49) 

De acordo com a regra de Bayes temos que: 

𝑓 𝛽|𝑦∗ =
𝑓 𝑦∗|𝛽 𝑓(𝛽)

𝑓(𝑦∗)
          (50) 

Portanto, deseja-se maximizar a função 𝑓 𝛽|𝑦∗  para que o valor de 𝑦∗ obtido 

experimentalmente esteja o mais próximo possível do valor real. Sendo assim, é 

necessário determinar a distribuição de probabilidade 𝑓(𝛽). Essa probabilidade é 

determinada a partir do conhecimento prévio que se tem em relação a 𝛽.  

A função 𝑓 𝛽  é dada por: 

𝑓 𝛽 = 𝑒
−( 

𝛽0−𝜇 0
𝜍0

 
2

+ 
𝛽1−𝜇 1

𝜍1
 

2
+⋯+ 

𝛽𝑛−𝜇𝑛
𝜍𝑛

 
2

)
       (51) 

A média e a variância associadas a cada um dos 𝛽𝑖  são determinadas de acordo 

com o conhecimento prévio daquele que aplica este método de regularização. Este 

é um dos aspectos interessantes dessa modelagem.  
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A 𝑓 𝑦∗  é calculada de acordo com os dados experimentais que se tem em mãos. 

Portanto, 𝑓 𝑦∗  é um número conhecido (uma constante). Sendo assim, como se 

deseja maximizar (49), todas as constantes podem ser “ignoradas”. 

Trabalhando com os parâmetros do problema deste trabalho, determinação das 

imperfeições geométricas em superfícies cilíndricas, obtemos as equações a seguir, 

para 𝑕 = 1: 

𝑓 𝑣∗|𝐴 =
1

 2
𝑚 𝑒−

1

2
   𝑣∗ − 𝜙  𝐴  𝑇([𝑣∗]−[𝜙][𝐴]) 

       (52) 

𝑓 𝐴 = 𝑒
−( 

𝐴1−𝜇 1
𝜍1

 
2

+⋯+ 
𝐴𝑛−𝜇𝑛

𝜍𝑛
 

2
)
        (53) 

Para a equação (53) foi adotado variância unitária e a média relacionada a cada um 

dos coeficientes foi determinada de acordo com a equação 𝜇𝑛 =
1

𝑛
. 

Sendo assim, para finalizar, foi realizada a minimização da função: 

−𝑓 𝐴|𝑣∗ ∗ = − 𝑒−
1

2
   𝑣∗ − 𝜙  𝐴  𝑇([𝑣∗]−[𝜙][𝐴]) 𝑒

−( 
𝐴1−𝜇 1

𝜍1
 

2
+⋯+ 

𝐴𝑛−𝜇𝑛
𝜍𝑛

 
2

)
     (54) 

A função 𝑓 𝐴|𝑣∗ ∗ é a função 𝑓 𝐴|𝑣∗  desprezando os termos constantes que fazem 

parte do equacionamento. 
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9. METODOLOGIA  

 

Para o desenvolvimento deste projeto seguiu-se a seguinte estrutura metodológica. 

9.1. FUNDAMENTAÇÃO TEÓRICA 

Primeiramente foi realizada uma revisão bibliografia com o objetivo de compreender 

os seguintes conceitos: problemas inversos, métodos de regularização e 

compreensão do fenômeno físico que modela o problema em questão. 

9.2. IMPLEMENTAÇÃO 

9.2.1. PROBLEMAS INVERSOS E MÉTODOS DE REGULARIZAÇÃO 

A princípio foi realizado um programa em Matlab para a modelagem de um 

fenômeno físico mais simples, determinação do campo de forças atuante em um 

corpo de massa 𝑚 através do conhecimento da sua trajetória em um plano 

(problema inverso). Com base nesta aplicação notou-se o problema de mal-

acondicionamento da matriz que modela o sistema e a necessidade de um método 

de regularização. Neste sentido, o primeiro método a ser estudado foi o de 

Tikhonov.  

Para gerar a medida, que em uma situação real (não artificial) seria obtida através 

de um instrumento de medição (acelerômetro, por exemplo), foi implementada a 

função representada pela equação (25), considerando que 𝐴𝑛 = 1/𝑛. 

Posteriormente, foi introduzido um erro que corresponderia ao erro intrínseco ao 

processo de medição. 

Sendo assim, fez-se um programa em Matlab e foi avaliada a relação entre os 

parâmetros de entrada e sua relação com o grau de precisão da solução obtida 

numericamente. 
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9.2.2. IMPLEMENTAÇÃO DO PROBLEMA DE INTERESSE 

Posteriormente, o mesmo foi feito com o problema de interesse: recuperação de 

imperfeições geométricas em superfícies cilíndricas aplicando o método de 

Tikhonov.   

9.2.3. APLICAÇÃO DO MÉTODO DE LANDWEBER E BAYESIANO 

Tendo sido modelado primeiramente o método de regularização de Tikhonov, 

posteriormente foram implementados o método iterativo de Landweber e, 

subseqüentemente, o método estatístico de Bayes. 

9.2.4. COMPARAÇÃO E ANÁLISE DE RESULTADOS 

Por fim, foi feito um estudo comparativo entre os métodos de regularização e os 

resultados obtidos foram tabulados e organizados na forma de gráficos para melhor 

visualização das conclusões. 
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10. RESULTADOS E ANÁLISES 

 

Os resultados obtidos das simulações são apresentados da seguinte maneira: 

primeiramente, os resultados obtidos de cada uma das implementações 

individualmente, e em seguida são feitas as análises comparativas. 

10.1. MÉTODO DE TIKHONOV 

Os parâmetros de entrada que envolvem a função implementada para esta 

aplicação são: 𝑙𝑖𝑚𝑖𝑡𝑒_𝑡 (intervalo de tempo em que é observado o perfil de 

velocidade), 𝑙𝑖𝑚𝑖𝑡𝑒_𝑛 (número de termos que compõem a série de Fourier que 

descreve a imperfeição inicial), 𝑥 (ponto da estrutura em que está sendo analisado o 

perfil de velocidade), 𝑓_𝑟𝑒𝑔 (é o fator de regularização 𝛿 aplicado na simulação) e 

por fim, 𝑎𝑙𝑓𝑎 (fator de proporção que define o percentual da carga de flambagem 

que é aplicada no impacto). 

function [saida]=recupera_regularizacao(limite_t, limite_n, x,f_reg, alfa) 

Posto isto, foram realizadas algumas simulações para avaliar a influência de cada 

um dos parâmetros no grau de precisão da solução obtida.  A tabela abaixo traz os 

valores aplicados a cada um dos parâmetros. 

 

Table 1: Tabela de valores utilizada para realização das simulações no método de Tikhnov. 

Nota-se que nesta etapa foi avaliada uma variável de cada vez. Uma delas é 

variada enquanto as demais são mantidas constantes. 

Com base nestas simulações foram obtidos os seguintes gráficos. 
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Figure 5: Gráfico que expressa a influência do fator de regularização na precisão da solução obtida. 

 

Figure 6: Gráfico que expressa a influência do intervalo de tempo na precisão da solução obtida. 
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Figure 7: Gráfico que expressa a influência do ponto da estrutura (escolhido para ser observado o perfil de 

velocidade após o impacto) na precisão da solução obtida. 

 

Figure 8: Gráfico que expressa a influência do fator de proporção de carga (que define a proporção da carga 

de flambagem que será aplicada durante o impacto) na precisão da solução obtida. 
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𝑙𝑖𝑚𝑖𝑡𝑒_𝑛 = 3; 𝑙𝑖𝑚𝑖𝑡𝑒_𝑡 = 20; 𝑥 = 0.07; 𝑎𝑙𝑓𝑎 = 0.5; 𝑓_𝑟𝑒𝑔 = 10−9 

O próximo gráfico a ser mostrado (figura 9) foi plotado com base em simulações que 

foram realizadas levando-se em conta que o perfil de velocidade criado 

artificialmente possui um erro devido ao processo de medição (diferentemente dos 

gráficos anteriores), como acontece na prática. 

 

Figure 9: Gráfico que expressa a influência do intervalo de tempo na precisão da solução obtida. 

Essa simulação foi realizada variando o parâmetro 𝑙𝑖𝑚𝑖𝑡𝑒_𝑡 e mantendo constantes 

os demais (estes foram definidos com base nas simulações anteriores).  

10.2. MÉTODO ITERATIVO DE LANDWEBER 

Os parâmetros de entrada que envolvem a função implementada para esta 

aplicação são: 𝑙𝑖𝑚𝑖𝑡𝑒_𝑡 (intervalo de tempo em que é observado o perfil de 

velocidade), 𝑙𝑖𝑚𝑖𝑡𝑒_𝑛 (número de termos que compõem a série de Fourier que 

descreve a imperfeição inicial), 𝑥 (ponto da estrutura em que está sendo analisado o 

perfil de velocidade), 𝑎𝑙𝑓𝑎 (fator de proporção que define o percentual da carga de 

flambagem que é aplicada no impacto), 𝑙𝑎𝑚𝑏𝑑𝑎 (é o fator de relaxação aplicado no 

método iterativo), 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (é o fator que define o grau de precisão da solução que 

será obtida) e 𝑡𝑎𝑢 (fator utilizado no critério de parada). 

function [saida]=landweber(limite_t, limite_n, x, alfa, lambda, epsilon, 

tau) 
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Da mesma forma que foi feito nas simulações com o método de Tikhonov, 

primeiramente será analisado o efeito de cada uma das variáveis na precisão da 

solução obtida. Para tanto, essas primeiras simulações foram realizadas com os 

valores exatos do perfil de velocidade. 

 

Table 2: Tabela de valores utilizada para realização das simulações no método de Landweber. 

Com base nestas simulações foram obtidos os seguintes gráficos: 

 

Figure 10: Gráfico que expressa a influência do epsilon na precisão da solução obtida. 
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Figure 11: Gráfico que expressa a influência do intervalo de tempo na precisão da solução obtida. 

 

Figure 12: Gráfico que expressa a influência do ponto da estrutura (escolhido para ser observado o perfil de 

velocidade) na precisão da solução obtida. 
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Figure 13: Gráfico que expressa a influência do fator de proporção de carga (que define a proporção da carga 

de flambagem que será aplicada durante o impacto) na precisão da solução obtida. 

 

Figure 14: Gráfico que expressa a relação epsilon e número de iterações. 
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Figure 15: Gráfico que expressa a relação intervalo de tempo e número de iterações. 

 

Figure 16: Gráfico que expressa a relação do inverso do coeficiente de segurança com o número de iterações 
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Figure 17: Gráfico que expressa a relação do parâmetro de relaxação com o número de iterações. 

Com base nos resultados acima foram determinados os “melhores” valores para os 

parâmetros que modelam este problema. 

𝑙𝑖𝑚𝑖𝑡𝑒_𝑛 = 3; 𝑙𝑖𝑚𝑖𝑡𝑒_𝑡 = 20; 𝑥 = 0.02; 𝑎𝑙𝑓𝑎 = 0.8; 𝑙𝑎𝑚𝑏𝑑𝑎 = 1;  

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 10−5;  𝑡𝑎𝑢 = 1.1 

Quanto às simulações que levam em conta o erro inerente a qualquer processo de 

medição, observou-se que o método funciona e conduz à convergência da solução 

correta. No entanto, as simulações são bastante demoradas, por menor que seja o 

erro introduzido na medição do perfil de velocidade. 

10.3. MÉTODO ESTATÍSCO DE BAYES 

A modelagem deste método foi feita de forma diferente dos dois anteriores. Neste 

caso, como se trata de uma abordagem estatística, foi feita a minimização da função 

representada por (8) através da função [z,fval,exitflag]=fminunc(@myfun, 

z0) do Matlab. Sendo que  myfun é a função dada por (54). 

Nesta abordagem, o parâmetro relevante a ser analisado é o número de pontos do 

perfil de velocidade que se conhece. Isto porque, supondo que a equação (21) seja 
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mínimo, dois valores de 𝑣 𝜉0,𝜏 . No entanto, quanto maior o número de pontos 
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Com base neste aspecto, foram realizadas algumas simulações. Os resultados 

encontram-se plotados abaixo. É possível verificar que quanto maior o número de 

pontos conhecidos do perfil de velocidade, menor o erro associado à solução obtida.  

 

Figure 18: Influência do número de pontos do perfil de velocidade na solução obtida. 
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11. CONCLUSÃO 

 

O que se conclui das simulações dos três métodos de regularização abordados, 

primeiramente, que o método iterativo de Landweber, embora tenha convergência 

garantida de acordo com o teorema expresso em [1], é aquele que possui o maior 

custo computacional. O número de iterações, à medida que aumenta a incerteza 

associada ao perfil de velocidade medido, cresce demasiadamente. Neste trabalho, 

este fator foi um ponto crítico e limitou de certa forma o número de simulações deste 

método.  

Tratando do método de Tikhonov, observa-se que a implementação é bastante 

simples e, além disso, o custo computacional é relativamente baixo. Este método 

também apresenta ótimos resultados, em especial quando se utiliza um longo 

intervalo de tempo. Outro fator importante é a escolha do parâmetro de 

regularização 𝛿. Observa-se que a partir de um determinado valor (neste 

experimento 𝛿 = 10−25) o problema de mal condicionamento passa a existir 

novamente. 

Quanto ao método estatístico de Bayes, trata-se de uma abordagem muito 

interessante, pois diferentemente dos outros dois métodos, permite a inserção de 

informações previamente conhecidas. Por exemplo, de acordo com [5] há um banco 

de dados (The Internacional Initial Imperfection Data Bank) criado por 

pesquisadores das Universidades de Delft e Haifa que armazena informações 

sistemáticas sobre imperfeições em cascas cilíndricas metálicas, motivados pelo 

estudo de flambagem em estruturas utilizadas na indústria aeroespacial. Portanto, 

alguém que deseja medir imperfeições em uma estrutura que possui essas 

características pode utilizar tais informações na modelagem do problema, o que 

torna este modelo bastante flexível. 
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