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RESUMO

Este projeto tem como proposta apresentar uma abordagem, diferente da
convencional, que permite medir indiretamente as imperfeicbes geométricas
axissimeétricas presentes em cascas cilindricas sujeitas a flambagem. O diferencial
desta abordagem € que ao invés de ser necessario 0 mapeamento de toda
superficie do corpo, basta inferir medicbes em um Unico ponto da estrutura. O
parametro a ser medido experimentalmente é a resposta dindmica de um unico
ponto da estrutura quando o corpo em analise é submetido a um carregamento
subito e instantaneo. Mostra-se, portanto, que € possivel determinar as imperfeicdes
geométricas de uma superficie por meio do conhecimento do perfil de velocidade de
um ponto da superficie da estrutura durante um intervalo de tempo limitado. O cerne
deste trabalho é a discusséo e a apresentacdo dos argumentos matematicos que
asseguram que esta abordagem matematica fornece resultados confiaveis, que
condizem com a realidade. Posto isto, é importante salientar que esta abordagem
indireta (obtencdo das imperfeicbes geométricas por meio do conhecimento da
resposta dinAmica de um ponto da estrutura quando a mesma € submetida a um
impulso), recai na formulacdo de um problema inverso e mal-posto. Portanto, ha a
necessidade do emprego de um método de regularizacdo para que os resultados
fornecidos de acordo com esta formulacdo sejam Uteis do ponto de vista da
engenharia. Para a andlise deste problema sdo empregados trés métodos de
regularizacdo. Sao eles: regularizacédo de Tikhonov, método iterativo de Landweber
e método probabilistico bayesiano. Para finalizar, posteriormente é feito um estudo

comparativo entre os trés métodos implementados.

Palavras-chave: Regularizacdo, Problemas Inversos, Flambagem, Problema Mal-

Posto.



ABSTRACT

The aim of this paper is finding out a mathematical approach, different from the
conventional ones, to measure indirectly the axisymmetric geometric imperfection w,
in a given cylindrical shell subject to buckling. The trick of this approach is to get the
measure just in one point of the structure instead of to get the measures in the role
surface. The parameter to be measure is the dynamic response of one point of the
structure when the body is subject to a suddenly and instantaneous load. It is
showed that by this way it is possible to recover wyfrom the knowledge of the
velocity of a point during a bounded period of time. The main point of this paper is
the discussion and the presentation of mathematical arguments which ensure that
this approach is reliable. It is important to emphasize that this indirectly approach
lays on the formulation of an inverse problem and ill-posed problem. Then, it is
necessary to apply regularization method to obtain useful solutions from the
engineering point of view. It is applied three regularization methods. They are:
Tikhonov regularization, iterative method of Landweber and Statistical Bayesian
approach. To sum up, it is done a comparative study between the all methods

applied.

Keywords: Regularization, Inverse Problems, Buckling, Ill-posed Problem.
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1. INTRODUCAO

No6s ultimos 30 anos [1] o numero de publicacdes relacionadas a problemas
inversos cresceu de forma répida. Este fato se deve a crescente demanda de
tecnologia e conhecimento das ciéncias naturais, as quais nos levam a formulacao
de problemas que devem ser interpretados e solucionados por meio da busca da
causa de consequéncias conhecidas. E exatamente este caminho, contrario a

ordem natural que caracteriza a formulacdo de um problema inverso.

A necessidade de medir imperfeicbes geométricas em estruturas axissimeétricas,
como cilindricas, é um fato corriqueiro na engenharia, como na aerondutica, na
industria de estruturas off-shore, bem como em aplicacbes que envolvem grandes

estruturas como € o caso de torres de resfriamento, como citado em [3].

Dada esta necessidade e a complexidade dos atuais métodos de medicdo, a
apresentacdo de uma abordagem indireta, que permite a obtencdo dessas
imperfeicbes superficiais através do conhecimento do perfil de velocidade de um
Unico ponto da superficie da estrutura quando ela é submetida a um carregamento

repentino e subito é bastante interessante do ponto de vista pratico e econémico.

Apresentacdo desta abordagem indireta recai na formulacdo de um problema

7z

inverso mal-posto. Portanto, € necessaria a aplicacdo de um método de

regularizacdo para lidar com a questdo de mal-acondicionamento do problema.



2.

OBJETIVOS

Este trabalho tem como objetivo apresentar uma abordagem indireta que permite a

obtencdo das imperfeicbes geométricas de uma casca cilindrica por meio do

conhecimento da resposta dinamica de um uUnico ponto da estrutura quando ela é

submetida a uma carga de impulso. Sendo assim, diferentemente dos métodos

convencionais, ndo ha a necessidade de se medir diretamente a imperfeicao

geomeétrica presente ao longo de toda a superficie da estrutura.

Para atingir o objetivo enunciado acima o trabalho esta estruturado da seguinte

maneira:

Apresentacdo dos argumentos matematicos citados nas referéncias
bibliogréficas os quais asseguram a confiabilidade do método, bem como as
hip6teses adotadas.

Apresentacdo do problema fisico, ou seja, como € modelado
matematicamente a dinamica da estrutura quando submetida a um
carregamento repentino e instantaneo.

Apresentacdo de trés métodos de regularizacdo que permitem lidar com a
questdo de mal acondicionamento do problema.

Implementacdo numérica dos trés métodos de regularizacdo, seguido da

andlise comparativa de desempenho entre os trés.

10



3.  METODOS CONVENCIONAIS DE MEDICAO DE
IMPERFEICOES GEOMETRICAS EM CASCAS

Levando-se em conta grandes estruturas de concreto como torres de resfriamento
gue possuem dimensdes da ordem de 60 m a 160 m de altura e espessura entre
0.1 m a 0.25 m, os desvios superficiais de geometria podem atingir de duas ou trés
vezes a dimensao da espessura, como € mencionado em [3].

Um modo de mapear a superficie de uma casca de revolugcdo € por meio da
triangulacdo utilizando teodolitos. Para a aplicacdo desta técnica é necessario a
utilizacdo de vérias estacfes de medicdo, sendo que duas delas sdo utilizadas
simultaneamente para obter a informacdo de um ponto da estrutura como é

mostrado na figura 1.

Figure 1: Processo de medicdo de torres de resfriamento utilizando teodolitos.

A dimensédo da casca cilindrica é obtida através da linha poligonal ABCDEFGH que
interliga as estacdes de medicao. Para exemplificar, toma-se o ponto T da superficie
da estrutura cilindrica. O ponto T € identificado na superficie através de um laser
gue se encontra localizado em L. Sendo assim, a posi¢cdo angular de T é obtida
através das estacdes A e B determinando, portanto, o comprimento do segmento
AB.

Para torres de resfriamento o nUmero de pontos que necessitam ser medidos € da

ordem de 102 para que se obtenha o mapeamento completo da superficie [3]
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Outra técnica empregada com esta finalidade € o uso do dispositivo laser “range-
finder”. Apenas uma observacdo € necessaria para se obter a distancia LT,

diferentemente do método anterior.

Figure 2: Laser “range finder”utilizado em medi¢do de imperfeig6es em estruturas de grande escala.
Fonte[6].

Uma terceira maneira de se obter o perfil desejado € por meio da fotogrametria.
Tratando-se de estruturas cilindricas de dimensdo reduzidas, as quais s&o
geralmente utilizadas em laboratérios como corpo de prova para avaliagdo das
caracteristicas de estruturas de grande dimensdo, a importancia em se determinar
as imperfeicdes geométricas superficiais estd associada a avaliacdo da carga de
flambagem. Atualmente as técnicas utilizadas para se fazer essa afericdo consistem
no mapeamento da superficie interna da estrutura por meio de um reldgio
apalpador.

Com base neste breve apanhado de técnicas empregadas para a medicdo da
imperfeicdo geométrica de superficies cilindricas, observa-se que se trata de
procedimentos complexos. Portanto, uma abordagem indireta que ndo necessita do
mapeamento direto do perfil superficial de toda a extensdo do cilindro vem a
simplificar esta tarefa bastante ardua. Isto porque a abordagem proposta por este
trabalho necessita de medi¢cdes em apenas um ponto da superficie, diferentemente

12



dos métodos citados anteriormente que exigem medi¢cdes ao longo de grandes

extensoes.

13



4. PROBLEMAS INVERSOS

Para tornar claro o conceito associado a problemas inversos, nesta sec¢do esta

reproduzido o exemplo dado por [1].

Partindo de um modelo matematico que descreve um processo fisico e assumindo
gue este modelo fornece uma descricdo do comportamento do sistema, das
condicbes de operacdo e das grandezas envolvidas: entrada, parametros do

sistema e saida, trés tipos de formulacédo podem ser encontradas.
Sao elas:

e O problema direto: conhecida a entrada e os parametros do sistema deve-se
encontrar sua saida.

e O problema de reconstrucéo: conhecido os parametros do sistema e a saida,
determinar a entrada do sistema.

e O problema de identificacdo: conhecida a entrada e a saida, descobrir os

parametros do sistema.

Parametros
Sistema

Entrada Saida

SISTEMA

Figure 3: Esquema de um sistema e seus parametros.

O primeiro caso é denominado problema direto, uma vez que ele é orientado de
acordo com a relacdo causa-efeito. Ja os dois ultimos casos sdo denominados
problema inverso, uma vez que ambos tratam de encontrar causas desconhecidas
para consequéncias conhecidas.

Em alguns casos, o problema inverso pode ser convertido facilmente em um

problema direto. Por exemplo, supondo que A seja o operador que descreve o

14



sistema em questio e que, além disso, A~ seja inversivel e conhecida, temos que o
problema de reconstrucdo pode ser resolvido por: x = A~ly, dado que x é a entrada
e y é a saida. Entretanto, se a saida y n&o estiver no dominio de A !o
conhecimento da inversa de A ndo soluciona o problema. Este tipo de situagéo é
comumente encontrado em problemas nos quais a saida € determinada de forma
imprecisa ou encontra-se distorcida devido a distarbios inerentes a processos de
medicdo, por exemplo. Em outros casos, A~! é um operador mal comportado, ou
seja, aproxima-se da condicdo de operador singular. Isso causa grande instabilidade
na resposta obtida tornando-a praticamente inutil do ponto de vista de engenharia.
Neste contexto que sdo empregados os métodos de regularizacdo. Estes métodos
tém por objetivo afastar o operador A~'da regido de operagdo singular, tornando
confiavel (dentro de uma determinada margem) a solucédo obtida para o problema.
Neste trabalho sdo empregados trés métodos de regularizacdo. Apds a
implementagéo de cada um deles é realizado um estudo comparativo.

Para a analise completa de um problema inverso, além do que foi dito, &
fundamental levar em conta a unicidade da reconstru¢cdo do dado que se deseja
encontrar, ou seja, se a solucdo obtida pelo método € de fato Unica. Outro aspecto
importante diz respeito a estabilidade do modelo matematico que descreve o
sistema em analise.

Neste trabalho a unicidade da reconstrucao da imperfeicdo inicial da superficie esta
provada em [8]. Ja a estabilidade do sistema estd associada ao grau em que 0S
erros inerentes aos dados que se tem conhecimento interferem na confiabilidade da
solucao obtida para o problema em analise. Em outras palavras, significa saber se
um pequeno distirbio no dado obtido ou observado conduz a um pequeno ou
grande distanciamento da solucéo real e exata. Neste trabalho, a avaliacdo quanto a

estabilidade sera feita por meio de analises numéricas.
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5. FORMULACAO DO PROBLEMA

O problema formulado trata da analise de uma estrutura cilindrica com imperfeicdes
superficiais, que devem ser determinadas por meio da analise da resposta dindmica

de um anico ponto da estrutura quando submetida a um impacto.

O problema trata especificamente de uma casca cilindrica de espessura h, raio R,
comprimento L, submetida a uma carga normal de impacto de valor N. Além disso, o
material da estrutura é homogéneo de densidade p, mdédulo de Young E e
coeficiente de Poisson v. A imperfeicdo superficial inicial é representada por
wo:[0,L] » R,w, € L?([0,L]). O problema descrito acima esta representado pela

figura abaixo.

Q. + %Ay

N INg A e
;\_,‘ + B A.l

o M, + AL A
wo ‘?\::
dM,
Y ATU;; —+ T;A.ﬁ
N
., 9N,
N, + D Ap

Figure 4: Representacdo do problema fisico. Fonte[8]

A equacgdo que descreve a dindmica desta estrutura submetida ao carregamento N
repentino e instantaneo é obtida através da analise mecanica de um elemento

diferencial da estrutura [2].

atw a%w 1w Eh
D—+N +phm+R—2W

92w
A i — —N?;’,Vx € [0,L], Vt €]0, +) (1)

Sendo que w é a amplitude da resposta dindmica do ponto da estrutura e D =

3

a7 é a rigidez a flexdo da casca cilindrica. E importante observar que N é uma

carga de impacto. Portanto, apds sua aplicagdo repentina a estrutura encontra-se

16



em repouso. As condi¢cdes de contorno da estrutura sdo dadas pelas seguintes

equacoes:

W(xt)=az—w=0x=Oex=L (2)
) axz )

W(x,t)=2—:/=0,t=0 3)

A carga N é definida e dada pela inequacao:

ADEh
N2 < YR (4)

Para adimensionalizar o problema adotou-se as seguintes variaveis:
—w., . _ W
u= W Uy = T (5)

N

(6)

—x- — . —
E—Z,T—wlt,a—

crit

Onde w; é a primeira freqiéncia natural do sistema, a qual € independente das
imperfeicdes iniciais da estrutura e N,,;; € a carga critica de flambagem da estrutura
perfeitamente cilindrica (sem imperfeicbes). Os parametros descritos acima séo

dados pelas equacoes:

Dm4 E D
w1 = phL* +pR2; Ncrit = L_zy (7)

W BA—v; p =2 (8)

A equacéo (1) na versao adimensional € representada por:

a%tu
o0&t dx 52

4) + pu = —ay

gz %,vE& €[0,1], VT €]0, +*) 9)
As condi¢des de contorno e inicias adimensionalizadas sao dadas por:

u(g,r)=%=0,§=0e§=1 (10)

ult)=1=0,t=0 (11)
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Para avaliar de forma bastante genérica as imperfeicfes iniciais da estrutura
adotou-se a seguinte formulagédo [4] para wy(x) que no formato adimensional &

expresso por u, (£):

U (§) = Ln=1 4y sin(nms) (12)

A partir do isomorfismo entre L? ([0,1]) e [? temos que (4,),ey € [2. Por separacio
de variaveis obtém-se que u(é,7) = Yo G,(7) sin(né). Expressando de forma

mais completa:

ayn?(1—cos (nmé))

U(f, T) = 7(’)lo=1 An [ 2B+t ] sin(nnf) (13)
Onder, = Jﬁ%\/nznz —ay + nfnz. (14)

Derivando a equacéo (13) temos que o perfil de velocidade na estrutura é definido

por:

du(é,1) 0 ayn?sin (nmé)
o = V@D = An T e SN ) (15)

E provado em [8] a unicidade da recuperacéo do perfil de imperfeicées iniciais. Além
disso, é provado que basta a analise do perfil de velocidade em um Unico ponto &,
durante um intervalo de tempo limitado para que seja possivel determinar A, e

assim obter as imperfeicdes geométricas iniciais da estrutura.

Sendo assim, substituindo &por &, temos:

ayn?sin (nmép)

v(§0,7) = Xie1An = g mn - SIN(TaT) (16)

Portanto, apos a determinacdo das grandezas envolvidas no problema através das

equacoes explicitadas acima, temos em termos matriciais o seguinte sistema:

v(11) o(1,11) d211) dpT1)| |4
v(1) F oL 1) ¢(2,12)  o(p,12)|X|A2 (17)
(Tm) ¢(11 Tm) ¢(2’Tm) ¢(p' Tm) AP

Sendo que ¢(n, ;) € determinado pela equagédo abaixo de acordo com (16):

ayn?sin (nw&p)

P(M.$0) = = =5 ST (18)

18



Portanto, conhecendo v(fo,r) por meio do processo experimental e determinado

¢(n, &) analiticamente, € possivel encontrar os coeficientes [4,] e assim

determinar wy(x) = Y51 4, sin(nmx). (29)
A formulagéo inversa da equacao apresentada em (17) e dada por:

[A] = [¢]7'[v] (20)

19



6. REGULARIZACAO DE TIKHONOV

Como mencionado anteriormente, quando tratamos de problemas mal-postos,

complicacbes podem ocorrer quando deseja-se encontrar a solu¢cdo da equacéo do
tipo [A][x] = [y].

Posto isto, facamos as seguintes consideracoes:

Hy,H, sao espacos de Hilbert de dimensao infinita com os produtos internos

definidos por < x,y >;,x,y € H;,j = 1,2e A: H; » H, um operador compacto.

Os espacos de Hilbert sdo uma generalizacdo abstrata dos espacos Euclidianos R"
e unitario C" onde a notacédo central € o produto interno. A partir do produto interno

obtemos a norma e o conceito de ortogonalidade entre vetores no espago.

Um operador linear T é dito compacto se T:E — F para toda seqiéncia limitada
(x,) c E, a sequéncia (Tx,) possuir uma subsequéncia convergente. Como

exemplo de espac¢o normado temos o espaco de Hilbert.
Sendo assim, de acordo com [5] temos a seguinte definicao:

Definicdo: Seja § > 0 uma constante dada. A solucdo regularizada de Tikhonov
xs € H; (pertencente ao espaco de Hilbert) € minimizada pelo funcional, dado que

existe um minimo:

F5(x) = |I[Allx] = [y1lI* + SII[x]1I7 (21)

O parametro § apresentado é denominado parametro de regularizagcdo. Ao
introduzir este parametro substituimos a matriz [A] por outra “semelhante”, porém

isenta do problema de mal- acondionamento.

A escolha do parametro de regularizagdo § € baseada no nivel de ruido da medida
[y]. Assumindo que ¢ > 0 seja uma estimativa da norma do erro do vetor ||[y] —
[Volll < &, f(6) = l[Allxs] — [v]ll = €, isto é, a solucdo regularizada ndo deve ser

mais precisa do que o nivel do ruido.
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Aplicando o meétodo descrito acima para o problema de determinacdo de
imperfeicbes geométricas em superficies cilindricas temos que a velocidade de um

determinado ponto da estrutura em certo instante do tempo € dada pela equacéo:

v($0,T) = Xn=1 4y d(n, 7, o) (22)

Tendo sido aquisitados (de acordo com algum método de medicéo) os valores da
velocidade em {, durante um intervalo de tempo limitado, o sistema matricial que

descreve o problema em questao é representado por:

v(7y) d(1,1) ¢21) dpT)| |4

v(t))|= d(L,12)  0(2,72) ¢(p,72) [X|42 (23)
(Tm) ¢(1, Tm) ¢ (21 Tm) ¢(p' Tm) AP

De forma mais compacta:

[v] = [¢] x [A] (24)

Lembrando que os valores de ¢(n,t) sdo conhecidos, de acordo com (18), deseja-

se determinar os coeficientes [4,]. Temos que:[A] = [¢] ! X [v]

Como dito anteriormente, temos que o problema inverso acima € mal-posto. Sendo
assim, é necessaria a aplicacdo de um meétodo de regularizacdo. O objetivo € a

minimizacg&o da norma F(4,) = ||[¢][4s] — [v]l|* onde [As] € a solucdo regularizada.
F(An) = Xn_1 (B Ay d(n, 1) — v(5))? (25)
Uma condicdo para o minimo de F(4,,) € obtido para:

% n) = (26)

Calculando a derivada parcial de (25) em funcao dos coeficientes [4,,] temos:

Yo X At (ng) =20 X v() d(n, 1) (27)
Em termos matriciais a equacéo (25) resulta no sistema normal dado por:

(] [01[A] = [#]°[v] (28)
Se [¢]°[¢] = [B] e [¢][v] = [C] temos que:

[A] = [B]'[C] (29)
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Ao implementar numericamente o problema descrito por (29) nota-se que se trata de
um problema mal posto, que opera proximo a regido singular. Sendo assim, aplica-

se 0 método de regularizacdo de Tikhonov de acordo com a equacgédo (21).

Temos entdo a minimizagcdo da norma dada por:

F(4,) = lllp][As] — [v]II* + Sl [4s] 17 (30)
Que analogamente ao que foi desenvolvido acima resulta em:

([o"1#] + [116) x [A] = [¢]‘[v] (31)
Se [p]'[¢] + [116 = [B] e [¢]*[v] = [C] temos:

[A] = [B]7*[C] (32)
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7. METODO ITERATIVO DE LANDWEBER

O método iterativo de Landweber é aplicado para equacdes lineares e néo lineares.
E provado em [1] que para todos os casos a convergéncia de resultados é obtida
mesmo quando ha a presenca de ruido no dado imputado. Neste trabalho, é

avaliado o sistema [A][x] = [y].

Sabe-se que nas circunstancias reais os dados possuem erro de medi¢cao, portanto,
somente dados aproximados y¢ tal que ||[y] — [y¢]]| < € estdo disponiveis (dado que

€ € 0 grau de ruido).

Tomando [A] temos que a solugdo generalizada € dada por [A*][A][x] = [A"][y]
onde [A*] € a adjunta de [A4].

O método iterativo que fornece a solucdo do sistema normal dado é baseado em

equagdes de ponto fixo do tipo:
[x] = [x] — [A"]([A][x] — [y]) = ([I] — [A"][AD[x] + [A7][¥] (33)
A iteracio de ponto fixo acima sugere a iteragéo explicita dada por:
[xk+1] = [x] — A[A"]([Al[x ] — [YD, k = 0 (34)

Um ponto fixo de uma fungéo ¢(x) € um numero real ¢ tal que { = ¢({). Seja { uma
raiz da equacgédo f(x) =0, isolada no intervalo I = [a,b]. Seja ¢ uma funcdo de

iteracdo para a equacédo f(x) = 0. A partir de f(x) = 0, obtém-se x = ¢(x) se:

e ¢(x)e ¢'(x) (derivada de ¢(x)) sao continuas em [
e @(x) €1 paraqualquer x €
e |p'(x)]<M<1,paraqualquerx €1

L] X el
Entéo a sucesséo {x,} gerada pelo processo iterativo x; .1 = @(x;) converge para ¢.

O parametro 1 introduzido acima é um fator de relaxacéo. 1 < 1 se ||[4]]| > 1. Caso

contrario, 1 = 1.
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Quanto ao critério de parada é adotado o principio da discrepancia, o qual afirma

gue o processo iterativo deve parar no passo k = k(g, y®) onde:
<] — [Al[x£]]l < e, sendo T > 1. (35)

Aplicando este método ao problema de determinacdo das imperfeicdes geométricas

em superficies cilindricas temos:
¢
(An) = f(@) = X0 A ¢(n,7) (36)

Ou seja, aplicando o operador ¢ em (4,,) obtém-se a seqiéncia dada por (16).

Agora, aplicando o operador adjunto de ¢ (¢*) em f(t), que € a sequéncia expressa

em (25) obtém-se uma nova sequéncia dada abaixo por (37):

¢ .
f@> 9@ = () = X, [, F@S(i, )5t (37)
Onde a e b sao os limites do intervalo de integragéo.

Sendo assim, a equacao acima (37) pode ser reescrita como:

() =3P, [V 3P _ Ay ¢(n,D)(i, T)8T (38)

Isolando os termos constantes:

(o ,
f@ > 9@ =, I Ay [, 6D, T)d (39)
Portanto, a equacdo (34) reescrita em funcdo dos parametros deste problema é
dada por:
[Ak+1] = [Ar] = Ao 1([@1[Ax] = [v]) (40)

Sendo assim, o termo dado por [¢*][¢][A] = g(t) é representado pelo sistema:

[} ¢ DeLDdr [ (L D¢E DT[] (1L DeE D [
9@ =[] p@2, D¢, Ddr [ $(2,1)$(2 D)dr ff¢<z,r>¢<p,r)drsz (41)
Lo de [ o, 0¢2,Dde [ ¢, D¢ DdT| | P

E analogamente ao resultado obtido em (37), aplicando v(7) i s(t) temos:
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() S s(0) = (@) = 3, [P (@ T)or (42)

De forma mais clara resulta em:

fab v(D)¢p(1,1)dr
s(0) = [¢*1[v] =| [ v(D)$(2,7)dx (43)
[ v@ep,Ddr

Portanto, a equacéao (40) é reescrita de acordo com:

[Ak+1] = [Ak] = 2([g (D] = [s(D)D) (44)

Quanto ao critério de parada dado em (35) temos:

Iv] = [f (D][Ak]ll < 7e (45)

Portanto, o processo iterativo é encerrado para o k cuja norma dada acima respeita

a inequacéao dada em (45).
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8. METODO ESTATISTICO DE BAYES

A idéia da regularizacdo por métodos estatisticos € reformular o problema inverso
de tal forma que ele passe a ser encarado como um problema de busca de
informacdes estatisticas a respeito das variaveis e parametros que envolvem o

modelo em estudo.

Essa abordagem estatistica para problemas inversos estd baseada em quatro

principios segundo [5]. Eles séo:

e Todas as variaveis do modelo sdo modeladas como variaveis aleatérias.

e A aleatoriedade associada as varidveis descreve o grau de informacdo que
temos sobre elas.

e O grau de informacdo relativo a tais variaveis é expresso na forma de
distribuicdes probabilisticas.

e A solucdo do problema inverso, dentro desta abordagem, € expressa em

distribuicdo de probabilidade.

Diferentemente da abordagem classica de métodos de regularizacdo, que fornecem
uma estimacdo a respeito da variavel desconhecida, a regularizacdo por métodos
estatisticos produz uma distribuicdo que pode ser utilizada para se obter uma
estimacao do valor que se deseja determinar.

Supondo que o fendmeno analisado seja dependente das variaveis X;, X, ...X,, e
gue o fato a ser observado combine diferentes niveis de cada uma das variaveis

aleatérias. Por exemplo, para a variavel X; tem se 0s niveis x; = xq1, X132, -, X1p,

supondo que haja p diferentes combinacfes de cada uma das variaveis. De acordo

com [7] assume-se que o fendbmeno pode ser modelado da seguinte forma:

[y(xll X2, e xn)] = :BO + Z?:l[ﬁi] X[gl (xlf X2y e xn)] (46)
Ou seja, de forma mais compacta [y] = [g][B].

Os dados experimentais [y *] sdo gerados de um processo aleatorio da forma
[y* (1, X2, o X)] = Bo + X1 (B X[9: (1, X2, oo X)) + [€] (47)
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Onde ¢ representa 0 erro associada a medida. Tratando da formulagéo
probabilistica do problema temos que & é uma distribuicdo normal padréo (variancia

h~! = 1 e média nula).

A idéia por traz desta formulacéo probabilistica € a seguinte: deseja-se maximizar a
probabilidade de que o valor de y obtido experimentalmente (y*) de fato condiz com
o valor real, ou seja, aguele que € isento de erro. Para isto, temos 0 seguinte

sistema:

[y*] = [gl[B*] . Portanto, conhecendo [g] e [y*], basta determinar o valor do vetor

[8*] que maximiza a probabilidade de que o valor [y*] — [y] (exato).
Para determinar o valor de [$*] define-se a funcdo densidade probabilidade de [y].

Fiy*) = %e—gc[y*]—(wz?:l[m 1X[g(r1,x2,00 )2 (48)

Expressando de forma mais genérica e em funcdo da probabilidade condicional
f(’1B) temos:

* 1 —E *1_ T *7_
fO1B) = Fe > (" 1-LglBD" (y*1-191IBD (49)
De acordo com a regra de Bayes temos que:

o _ FOTIBB)
fBly) = (50)

Portanto, deseja-se maximizar a funcdo f(B|y*) para que o valor de y* obtido
experimentalmente esteja 0 mais proximo possivel do valor real. Sendo assim, &
necessario determinar a distribuicdo de probabilidade f(B). Essa probabilidade é

determinada a partir do conhecimento prévio que se tem em relacédo a .

A funcio f(B) é dada por:
() = o)+ (B2 (51)

A média e a variancia associadas a cada um dos B; sdo determinadas de acordo
com o conhecimento prévio daquele que aplica este método de regularizacédo. Este

€ um dos aspectos interessantes dessa modelagem.
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A f(y*) é calculada de acordo com os dados experimentais que se tem em maos.
Portanto, f(y*) € um numero conhecido (uma constante). Sendo assim, como se

deseja maximizar (49), todas as constantes podem ser “ignoradas”.

Trabalhando com os parametros do problema deste trabalho, determinacédo das

imperfeicbes geomeétricas em superficies cilindricas, obtemos as equacdes a seguir,

para h = 1:
1 * *
Fw*|A) :\/%e—g([v 1=[¢11ADT ([v*]-[$]1[A]) (52)
(A1) 4y (A )
f(A) =e (( g1 ) + +( on )) (53)

Para a equacao (53) foi adotado variancia unitaria e a média relacionada a cada um

dos coeficientes foi determinada de acordo com a equacéao u,, = %
Sendo assim, para finalizar, foi realizada a minimizag&o da fungéo:
— 2 _ 2
CF(A") = — et (v IIADT Qv 1)), ~(H) () (54)

A funcéo f(A|v*)* é a funcdo f(A|v*) desprezando os termos constantes que fazem

parte do equacionamento.
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9. METODOLOGIA

Para o desenvolvimento deste projeto seguiu-se a seguinte estrutura metodoldgica.

9.1. FUNDAMENTACAO TEORICA

Primeiramente foi realizada uma revisao bibliografia com o objetivo de compreender
0S seguintes conceitos: problemas inversos, métodos de regularizacdo e

compreensao do fendmeno fisico que modela o problema em questao.

9.2. IMPLEMENTACAO

9.2.1. PROBLEMAS INVERSOS E METODOS DE REGULARIZACAO

A principio foi realizado um programa em Matlab para a modelagem de um
fenbmeno fisico mais simples, determinacdo do campo de forcas atuante em um
corpo de massa m através do conhecimento da sua trajetéria em um plano
(problema inverso). Com base nesta aplicagdo notou-se o problema de mal-
acondicionamento da matriz que modela o sistema e a necessidade de um método
de regularizacdo. Neste sentido, o primeiro método a ser estudado foi o de

Tikhonov.

Para gerar a medida, que em uma situacao real (ndo artificial) seria obtida através
de um instrumento de medicdo (acelerdbmetro, por exemplo), foi implementada a
funcdo representada pela equacdo (25), considerando que A, =1/n.
Posteriormente, foi introduzido um erro que corresponderia ao erro intrinseco ao

processo de medicgéo.

Sendo assim, fez-se um programa em Matlab e foi avaliada a relacdo entre os
parametros de entrada e sua relacdo com o grau de precisdo da solugdo obtida

numericamente.
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9.2.2. IMPLEMENTACAO DO PROBLEMA DE INTERESSE

Posteriormente, o mesmo foi feito com o problema de interesse: recuperacao de
imperfeicbes geométricas em superficies cilindricas aplicando o método de

Tikhonov.
9.2.3. APLICACAO DO METODO DE LANDWEBER E BAYESIANO
Tendo sido modelado primeiramente o método de regularizagdo de Tikhonov,

posteriormente foram implementados o método iterativo de Landweber e,

subsequentemente, o0 método estatistico de Bayes.

9.2.4. COMPARACAO E ANALISE DE RESULTADOS

Por fim, foi feito um estudo comparativo entre os métodos de regularizacdo e os
resultados obtidos foram tabulados e organizados na forma de graficos para melhor

visualizac&o das conclusdes.
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10. RESULTADOS E ANALISES

Os resultados obtidos das simulacbes sdo apresentados da seguinte maneira:
primeiramente, o0s resultados obtidos de cada uma das implementacdes

individualmente, e em seguida sao feitas as analises comparativas.

10.1. METODO DE TIKHONOV

Os parametros de entrada que envolvem a funcdo implementada para esta
aplicacdo sdao: limite_t (intervalo de tempo em que é observado o perfil de
velocidade), limite_n (numero de termos que compdem a série de Fourier que
descreve a imperfeicao inicial), x (ponto da estrutura em que esta sendo analisado o
perfil de velocidade), f_reg (é o fator de regularizacdo § aplicado na simulagéo) e
por fim, alfa (fator de proporcdo que define o percentual da carga de flambagem

gue é aplicada no impacto).
function [saida]=recupera regularizacao (limite t, limite n, x,f reg, alfa)

Posto isto, foram realizadas algumas simulacGes para avaliar a influéncia de cada
um dos parametros no grau de precisdo da solucéo obtida. A tabela abaixo traz os

valores aplicados a cada um dos parametros.

SIMULACAO
Variavel limite_sup limite_n X f_reg alfa
limite_sup 0.5als 3 0.07 0.000000001 0.5
limite_n 10 lals 0.07 0.000000001 0.5
X 10 3 0a0.01 0.000000001 0.5
f_reg 10 3 0.07 0al0”-25 0.5
alfa 10 3 0.07 0.000000001 Dals

Table 1: Tabela de valores utilizada para realiza¢gdao das simula¢gdes no método de Tikhnov.

Nota-se que nesta etapa foi avaliada uma variavel de cada vez. Uma delas é

variada enquanto as demais sdo mantidas constantes.

Com base nestas simulagfes foram obtidos os seguintes graficos.
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Figure 5: Grafico que expressa a influéncia do fator de regularizagdo na precisao da solucdo obtida.
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Figure 6: Grafico que expressa a influéncia do intervalo de tempo na precisdo da solugdo obtida.
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Figure 7: Grafico que expressa a influéncia do ponto da estrutura (escolhido para ser observado o perfil de
velocidade apds o impacto) na precisdo da solugdo obtida.
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Figure 8: Grafico que expressa a influéncia do fator de proporgao de carga (que define a proporgao da carga
de flambagem que sera aplicada durante o impacto) na precisao da solugdo obtida.

E importante salientar que para as simulacBes realizadas acima os valores que
foram fornecidos para compor o perfil de velocidade (que na pratica seria obtido
durante um processo de medi¢céo), foram os valores exatos (calculado de acordo
com (16)), ou seja, foi levado em conta o fato da medida ser totalmente isenta de
erros. Isso foi realizado com o objetivo de observar a influéncia de cada um dos
parametros que modelam o problema (limite_t, limite_n, x, alfa, f reg). Com base

nisso, foram definidos os valores “ideais” para cada um dos parametros. Sao eles:
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limite_n = 3; limite_t = 20; x = 0.07; alfa = 0.5; f_reg = 107°

O préximo grafico a ser mostrado (figura 9) foi plotado com base em simulacfes que
foram realizadas levando-se em conta que o perfil de velocidade criado
artificialmente possui um erro devido ao processo de medicao (diferentemente dos

graficos anteriores), como acontece na pratica.
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Figure 9: Grafico que expressa a influéncia do intervalo de tempo na precisdo da solugdo obtida.

Essa simulacéo foi realizada variando o parametro limite_t e mantendo constantes

os demais (estes foram definidos com base nas simulagdes anteriores).

10.2. METODO ITERATIVO DE LANDWEBER

Os parametros de entrada que envolvem a funcdo implementada para esta
aplicacdo sdéo: limite_t (intervalo de tempo em que é observado o perfil de
velocidade), limite_n (nimero de termos que compdem a série de Fourier que
descreve a imperfeicdo inicial), x (ponto da estrutura em que estd sendo analisado o
perfil de velocidade), alfa (fator de proporgcéo que define o percentual da carga de
flambagem que é aplicada no impacto), lambda (€ o fator de relaxacdo aplicado no
método iterativo), epsilon (é o fator que define o grau de precisdo da solugdo que

sera obtida) e tau (fator utilizado no critério de parada).

function [saidal=landweber (limite t, limite n, x, alfa, lambda, epsilon,
tau)
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Da mesma forma que foi feito nas simulacdes com o método de Tikhonov,

primeiramente sera analisado o efeito de cada uma das varidveis na precisdo da

solugéo obtida. Para tanto, essas primeiras simulacdes foram realizadas com os

valores exatos do perfil de velocidade.

SIMULACAD
Variavel limite_sup limite_n x alfa alfa_relax epsilon fator
fimite_sup 0.5a100 3 0.02 0.8 0.99 104-5 1.1
limite_n 20 1als 0.02 0.8 0.99 104-5 1.1
X 20 3 0a0.08 0.8 0.99 104-5 1.1
f_reg 20 3 0.02 0.8 0.99 104-5 1.1
alfa 20 3 0.02 Dals 0.1lal 104-5 1.1
alfa_relax 20 3 0.02 0.8 0.99 104-5 1.1
epsilon 20 3 0.02 0.8 0.99 0.1al0n-7 1.1
fator 20 3 0.02 0.8 0.99 104-5 l.1laz2

Table 2: Tabela de valores utilizada para realizagdao das simulagées no método de Landweber.

Com base nestas simulagdes foram obtidos os seguintes graficos:
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Figure 10: Grafico que expressa a influéncia do epsilon na precisao da solugido obtida.
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Figure 11: Grafico que expressa a influéncia do intervalo de tempo na precisao da solugao obtida.
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Figure 12: Grafico que expressa a influéncia do ponto da estrutura (escolhido para ser observado o perfil de
velocidade) na precisdo da solugdo obtida.
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Figure 13: Grafico que expressa a influéncia do fator de proporgdo de carga (que define a proporg¢ao da carga

de flambagem que sera aplicada durante o impacto) na precisao da solugio obtida.
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Figure 14: Grafico que expressa a relagdo epsilon e nimero de iteragoes.
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Figure 15: Grafico que expressa a relagao intervalo de tempo e nimero de iteragées.
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Figure 16: Grafico que expressa a relagdo do inverso do coeficiente de seguranga com o nimero de iteragées
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Figure 17: Grafico que expressa a relagao do parametro de relaxagdo com o nimero de iteragées.

Com base nos resultados acima foram determinados os “melhores” valores para os

parametros que modelam este problema.
limite_n = 3; limite_t = 20; x = 0.02; alfa = 0.8; lambda = 1;
epsilon = 1075; tau = 1.1

Quanto as simulacdes que levam em conta o0 erro inerente a qualquer processo de
medicao, observou-se que o método funciona e conduz a convergéncia da solucao
correta. No entanto, as simula¢cdes sao bastante demoradas, por menor que seja o
erro introduzido na medicao do perfil de velocidade.

10.3. METODO ESTATISCO DE BAYES

A modelagem deste método foi feita de forma diferente dos dois anteriores. Neste
caso, como se trata de uma abordagem estatistica, foi feita a minimizacao da funcao
representada por (8) através da funcéo [z, fval,exitflag]=fminunc (@myfun,

z0) do Matlab. Sendo que myfun é a funcdo dada por (54).

Nesta abordagem, o parametro relevante a ser analisado € o nimero de pontos do
perfil de velocidade que se conhece. Isto porque, supondo que a equacéao (21) seja

composta por dois termos, para recuperar os coeficientes 4, sdo necessarios, no
minimo, dois valores de v(&,7). No entanto, quanto maior o nimero de pontos

conhecidos (v(fo,T)), mais precisa € a informacao obtida.
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Com base neste aspecto, foram realizadas algumas simulacdes. Os resultados
encontram-se plotados abaixo. E possivel verificar que quanto maior o nimero de

pontos conhecidos do perfil de velocidade, menor o erro associado a solugéo obtida.

Bayes
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0.4 *—¢
0.3

0.2 r—
0.1 * *

0

0 2000 4000 6000 8000 10000 12000

Diferenga entra a solugdo exata e a
obtida numericamente

Numero de pontos do perfil de velocidade

Figure 18: Influéncia do nimero de pontos do perfil de velocidade na solugao obtida.
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11. CONCLUSAO

O que se conclui das simulacdes dos trés métodos de regularizacdo abordados,
primeiramente, que o método iterativo de Landweber, embora tenha convergéncia
garantida de acordo com o teorema expresso em [1], é aquele que possui 0 maior
custo computacional. O numero de iteragdes, a medida que aumenta a incerteza
associada ao perfil de velocidade medido, cresce demasiadamente. Neste trabalho,
este fator foi um ponto critico e limitou de certa forma o numero de simula¢cfes deste

método.

Tratando do método de Tikhonov, observa-se que a implementacdo é bastante
simples e, além disso, o custo computacional é relativamente baixo. Este método
também apresenta 6timos resultados, em especial quando se utiliza um longo
intervalo de tempo. Outro fator importante € a escolha do parametro de
regularizacdo 6. Observa-se que a partir de um determinado valor (neste
experimento § = 1072°) o problema de mal condicionamento passa a existir

novamente.

Quanto ao método estatistico de Bayes, trata-se de uma abordagem muito
interessante, pois diferentemente dos outros dois métodos, permite a insercdo de
informacgdes previamente conhecidas. Por exemplo, de acordo com [5] hd um banco
de dados (The Internacional Initial Imperfection Data Bank) criado por
pesquisadores das Universidades de Delft e Haifa que armazena informacfes
sistematicas sobre imperfeicdes em cascas cilindricas metélicas, motivados pelo
estudo de flambagem em estruturas utilizadas na industria aeroespacial. Portanto,
alguém que deseja medir imperfeicbes em uma estrutura que possui essas
caracteristicas pode utilizar tais informagdes na modelagem do problema, o que

torna este modelo bastante flexivel.
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